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What is slug flow?

Gas

Liquid

Slug flow (in horizontal pipes):
• gas-liquid flow pattern

• continuous liquid phase

• intermittent sequence of liquid slugs 

• followed by longer gas bubbles

Problems of slug flow:
• large uncertainty in flow measurement

• large pressure fluctuations & loss

• damage of piping
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IDEA 

characterization of liquid slugs in time and space
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WANT 

liquid slugs are statistically similar in time and space (       coherent structure )
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spatial modes

temp. coefficientstime-averaged field temp. fluctuations

Snapshot Proper Orthogonal Decomposition

Decomposition of the flow parameter field (Sirovich, 1987): 
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Decomposition of the flow parameter field (Sirovich, 1987): spatial modes

temp. coefficientstime-averaged field temp. fluctuations

x

y

t

y y

t
x x

R =

eigenvalue

decomposition of

correlation matrix
𝜙𝑗(𝑥)

temp.

coefficients
spatial

modes

𝜆1

𝜆2

eigen-

values

𝑎𝑗 𝑡

0 𝑇

0

0

𝑡 in 𝑠 𝑙 in m
0

𝐿

𝐷

𝐷

0

0

… … …
Snapshot Proper Orthogonal Decomposition



6

𝜙𝑗(𝑥)

temp.

coefficients
spatial

modes

𝑎𝑗 𝑡

0

0

𝑡 in 𝑠 𝑙 in m

0

𝐷

𝐷

0

… …

Mode coupling

0 𝑇 𝐿0

0

0

0

𝐷

𝐷

0

• dynamics of coherent structure can be described by mode pair (Sieber et al., 2016)

• parameters of identified mode pair:

➢ combined energy content 𝐸 (in terms of a discrete time signal) 

➢ dominant frequency 𝑓

identification of mode pairs by

harmonic correlation

of temp. coefficients
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Slug flows for analysis

CFD-Simulation of a periodic

air-water slug flow
(slugging frequency 1 Hz)
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snapshot POD

Gas volume fraction field 𝜶𝒂𝒊𝒓

𝜶𝒂𝒊𝒓(𝒚, 𝒙, 𝒕 = 𝟕𝟎. 𝟖𝟔)

𝒚/𝑫

• time-invariant periodic perturbation of vertical position

of interface at inlet (Frank, 2008)       

slug formation of 1
𝑠𝑙𝑢𝑔

𝑠𝑒𝑐𝑜𝑛𝑑
= 𝟏 𝐇𝐳

• validation of slug characterization with snapshot POD

Water Air
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Slug flows for analysis

CFD-Simulation of a periodic

air-water slug flow
(slugging frequency 1 Hz)

Video observations of a 

nitrogen - brine water slug flow
(avg. slugging frequency 1.4 Hz)
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• performed by TUV SUD NEL  (JRP Report 

ENG58, 2018)

• counted slugs:  
72 𝑠𝑙𝑢𝑔

50 𝑠𝑒𝑐𝑜𝑛𝑑
≈ 𝟏. 𝟒 𝐇𝐳

Video
observation
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Results

Experimental datatemp. coef. 

liquid level
CFD data
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CFD Experiment

Energy content 𝑬 of mode pair (𝝓𝟏, 𝝓𝟐) 𝟒𝟔. 𝟔 % 𝟓𝟓. 𝟗 %

Dominant Frequency 𝒇 of mode pair (𝝓𝟏, 𝝓𝟐) 𝟏 𝐇𝐳 𝟏. 𝟒 𝐇𝐳

Averaged slug body length 𝑳𝒔 𝟕 𝑫 > 𝟒𝐃

Averaged structure length 𝑳∗ 𝟏𝟔 𝑫 𝟕. 𝟔 𝐃

Characterization of slugging structures:



Summary:
• quantification of slugging structures with snapshot POD in:

• time                        &                  space

Conclusion: 
• snapshot POD is a valid tool for characterisation of the slugging structures.

Outlook:
• quantify experimental slug flow (performed during MultiFlowMet I & II)

• find relation between slugging structures and uncertainties

Summary, conclusion and outlook

12

(dynamics, frequency) (length scale)
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• Air-water slug flow adopted from (Frank, 2008)

• straight horizontal pipe (𝐿 = 8𝑚, 𝐷 = 0.05𝑚)
• unsteady RANS approach

(𝑘-𝜔-SST, Ansys Fluent)

• time-invariant perturbation of interface at inlet

slug formation of 1
𝑠𝑙𝑢𝑔

𝑠𝑒𝑐𝑜𝑛𝑑
= 1 Hz

• flow parameters and superficial velocities: 

0                1               2               3               4               5               6               7           8
x  in m
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water air

density in 
kg

m3
998.2 1.225

dyn. viscosity in Pa ⋅ s 1.003 ⋅ 10−3 1.789 ⋅ 10−5

superficial vel. in 
m

s
1.0 1.0

Set up:
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𝜶𝒂𝒊𝒓(𝒚, 𝒙, 𝒕 = 𝟕𝟎. 𝟖𝟔)

• 𝛼𝑎𝑖𝑟(𝑥, 𝑦, 𝑡) acquired for 𝑡 ∈ 70𝑠, 80𝑠 at 100 Hz

Dair

water

inlet outlet

flow direction

Initial field
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APPENDIX - CFD-Simulation
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APPENDIX - CFD-Simulation
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APPENDIX - Experimental video observations

• performed by TUV SUD NEL (JRP Report ENG58, 2018)

• nitrogen - brine water slug flow

• horizontal pipe (𝐿 ≈ 10𝑚, 𝐷 = 0.0972𝑚)
followed by viewing section (𝐿 ≈ 4𝐷)

• avg. slug frequency
72 𝑠𝑙𝑢𝑔

50 𝑠𝑒𝑐𝑜𝑛𝑑
≈ 1.4 Hz

• flow parameters and superficial velocities:

• data acquired for 50𝑠 at 240 Hz

Set up:

Brine

water

Nitrogen 

gas

Video observations

Measurement

section 

Brine water Nitrogen gas

density in 
kg

m3
1011 10.8

dyn. viscosity in Pa ⋅ s 8.82 ⋅ 10−4 1.75 ⋅ 10−5

superficial vel. in 
m

s
0.545 1.635

Grayscale field
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APPENDIX - Liquid level extraction

17

ROI

Brine water - nitrogen

slug flow



• Collect pixel columns over time at 

inelt and outlet of the viewing

section

• Determine offset of inlet and outlet

image by cross-correlation

offset ≅ #timesteps

• Derrive 𝒗𝒔 with distance from inlet

to outlet

APPENDIX – Averaged translational velocity

INLET

OUTLET

Inlet frame 𝐴

Outlet frame 𝐵

Pointwise error |𝐴 − 𝐵|

relativ column wise error 𝜖(𝑙)

𝜖(ℎ)

Cross-corr. Coeff 𝑐(𝐴, 𝐵) Cross-corr. Coeff (noise test)
Cross-corr. Coeff 𝑐 𝐴, 𝐵
at maximal vertical value

INLET OUTLET
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APPENDIX – Multiphase flow pattern

Flow pattern map (Mandhane, 1974)

SLUG FLOW
REGIME

Gas

Liquid

Slug flow regime

Empiric flow pattern maps:
• pattern classified by superficial gas and liquid velocities
• non universal
• slug flow is 1 out of 6 flow pattern classes


