

Identification of coherent structures in horizontal slug flow

<u>**M. Olbrich^{1,2}**</u>, E. Schmeyer¹, M. Bär¹, M. Sieber², K. Oberleithner² and S. Schmelter¹

- ¹ Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2–12, 10587 Berlin, Germany.
- ² Institute of Fluid Dynamics and Technical Acoustics, Technische Universität Berlin, Müller-Breslau-Straße 8, 10623 Berlin, Germany.

PB What is slug flow?

Slug flow (in horizontal pipes):

- gas-liquid flow pattern
- continuous liquid phase
- intermittent sequence of liquid slugs
- followed by longer gas bubbles

Problems of slug flow:

- large uncertainty in flow measurement
- large pressure fluctuations & loss
- damage of piping

PTB What is slug flow?

Slug flow (in horizontal pipes):

- gas-liquid flow pattern
- continuous liquid phase
- intermittent sequence of liquid slugs
- followed by longer gas bubbles

Problems of slug flow:

- large uncertainty in flow measurement
- large pressure fluctuations & loss
- damage of piping

characterization of liquid slugs in time and space

liquid slugs are statistically similar in time and space () coherent structure)

PTB Snapshot Proper Orthogonal Decomposition

PTB Snapshot Proper Orthogonal Decomposition

PTB Mode coupling

- dynamics of coherent structure can be described by mode pair (Sieber et al., 2016)
- parameters of identified mode pair:
 - \succ combined energy content *E* (in terms of a discrete time signal)
 - \succ dominant frequency f

Identified mode pairs

PTB Slug flows for analysis

CFD-Simulation of a periodic air-water slug flow (slugging frequency 1 Hz)

 time-invariant periodic perturbation of vertical position of interface at inlet (Frank, 2008)

slug formation of
$$1 \frac{slug}{second} = 1 \text{ Hz}$$

• validation of slug characterization with snapshot POD

Gas volume fraction field α_{air}

PTB Slug flows for analysis

CFD-Simulation of a periodic air-water slug flow (slugging frequency 1 Hz)

 time-invariant periodic perturbation of vertical position of interface at inlet (Frank, 2008)

slug formation of
$$1 \frac{slug}{second} = 1 \text{ Hz}$$

• validation of slug characterization with snapshot POD

Gas volume fraction field α_{air}

PB Slug flows for analysis

CFD-Simulation of a periodic air-water slug flow (slugging frequency 1 Hz)

 time-invariant periodic perturbation of vertical position of interface at inlet (Frank, 2008)

slug formation of 1
$$\frac{slug}{second} = 1$$
 Hz

validation of slug characterization with snapshot POD

Video observations of a nitrogen - brine water slug flow (avg. slugging frequency 1.4 Hz)

 performed by TUV SUD NEL (JRP Report ENG58, 2018)

Water

National Metrology Institute

observation

snapshot POD

Field of interest for

water

PTB Slug flows for analysis

Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin

National Metrology Institute

Characterization of slugging structures:

	CFD	Experiment
Energy content \emph{E} of mode pair $(\pmb{\phi_1}, \pmb{\phi_2})$	46.6 %	55.9 %
Dominant Frequency f of mode pair $(oldsymbol{\phi}_1,oldsymbol{\phi}_2)$	1 Hz	1.4 Hz
Averaged slug body length L_s	7 D	> 4D
Averaged structure length L^*	16 D	7.6 D

PTB Summary, conclusion and outlook

Summary:

• quantification of slugging structures with snapshot POD in:

Conclusion:

snapshot POD is a valid tool for characterisation of the slugging structures.

Outlook:

- quantify experimental slug flow (performed during MultiFlowMet I & II)
- find relation between slugging structures and uncertainties

Thank you very much for your attention.

Acknowledgements

This work was supported through the Joint Research Project "Multiphase flow reference metrology". This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme. The authors would like to thank Terri Leonard and Marc MacDonald from TUV SUD NEL, who provided the experimental video observations.

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin Abbestraße 2–12 10587 Berlin Marc Olbrich Telefon:+49 30 3481-7098 E-Mail: marc.olbrich@ptb.de

www.ptb.de

Status: 06/19

PB APPENDIX - CFD-Simulation

Set up:

- Air-water slug flow adopted from (Frank, 2008)
- straight horizontal pipe (L = 8m, D = 0.05m)
- unsteady RANS approach (k-ω-SST, Ansys Fluent)
- time-invariant perturbation of interface at inlet

• slug formation of $1 \frac{slug}{second} = 1 \text{ Hz}$

• flow parameters and superficial velocities:

	water	air
density in $rac{\mathrm{kg}}{\mathrm{m}^3}$	998.2	1.225
dyn. viscosity in Pa · s	$1.003 \cdot 10^{-3}$	$1.789 \cdot 10^{-5}$
superficial vel. in $\frac{m}{s}$	1.0	1.0

Initial field

Gas volume fraction field α_{air}

• $\alpha_{air}(x, y, t)$ acquired for $t \in [70s, 80s]$ at 100 Hz

PB APPENDIX - CFD-Simulation

Set up:

- Air-water slug flow adopted from (Frank, 2008)
- straight horizontal pipe (L = 8m, D = 0.05m)
- unsteady RANS approach (k-ω-SST, Ansys Fluent)
- time-invariant perturbation of interface at inlet

• slug formation of $1 \frac{slug}{second} = 1 \text{ Hz}$

• flow parameters and superficial velocities:

	water	air
density in $rac{\mathrm{kg}}{\mathrm{m}^3}$	998.2	1.225
dyn. viscosity in Pa · s	$1.003 \cdot 10^{-3}$	$1.789 \cdot 10^{-5}$
superficial vel. in $\frac{m}{s}$	1.0	1.0

Initial field

• $\alpha_{air}(x, y, t)$ acquired for $t \in [70s, 80s]$ at 100 Hz

PTB APPENDIX - Experimental video observations

Set up:

- performed by TUV SUD NEL (JRP Report ENG58, 2018)
- nitrogen brine water slug flow
- horizontal pipe ($L \approx 10m$, D = 0.0972m) followed by viewing section ($L \approx 4D$)
- avg. slug frequency $\frac{72 \ slug}{50 \ second} \approx 1.4 \ Hz$
- flow parameters and superficial velocities:

	Brine water	Nitrogen gas
density in $\frac{\text{kg}}{\text{m}^3}$	1011	10.8
dyn. viscosity in Pa · s	$8.82 \cdot 10^{-4}$	$1.75 \cdot 10^{-5}$
superficial vel. in $\frac{m}{s}$	0.545	1.635

• data acquired for 50s at 240 Hz

PB APPENDIX - Liquid level extraction

PB APPENDIX – Averaged translational velocity

National Metrology Institute

PB APPENDIX – Multiphase flow pattern

Slug flow regime

Physikalisch-Technische Bundesanstalt Braunschweig and Berlin

Flow pattern map (Mandhane, 1974)